COURSE INFORMATION							
Course TitleCodeSemesterL+P HourCreditsEC							
MEDICAL IMAGING PHYSICS	PHYS 523	1	3 + 0	3	10		

Prerequisites

Language of Instruction	English
Course Level	Postgraduate
Course Type	Elective
Course Coordinator	
Instructors	Prof.Dr. Avadis Hacınlıyan, Assoc.Prof Ş.İpek Karaaslan
Assistants	Türkay Toklu
Goals	To ensure posgraduate students gain expertise in the physics of medical imaging and are able to use the physics principles described for interpreting medical images.
Content	Probability and statistics, nuclear imaging instrumentation, the physics in radiography, physics principles of fluoroscopy, computed tomography physics, factors affecting image quality, ultrasound imaging, NMR physics and its spectroscopy, radiopharmaceuticals and their utilisation, the physics of the gamma camera, imaging with SPECT, the physics of PET, quality assurance in medical physics, recent advances.

Learning Outcomes	Teaching Methods	Assessment Methods
1- Has a deep understanding of the utilisation of statistics for medical imaging	1, 5, 15	B, C
2- Has gained in-depth practical and technological use of the physics of radiological techniques and their quality assurance_in the workplace	1, 5, 15	B, C
3-Has expertise in the application of physics to nuclear medicine	1, 5, 15	B, C

Teaching Methods:	1: Lecture, 5: Problem solving, 15: Homework
Assessment Methods:	B: Final, C: Homework

COURSE CONTENT				
Week	Topics	Study Materials		
1	Probability and statistics			
2	Instrumentation with nuclear imaging			
3	Physics of radiography			
4	Fluoroscopy and its physics basis			
5	The physics of computed tomography			
6	Factors affecting image quality			
7	Ultrasound imaging			
8	Nuclear magnetic resonance principles and spectroscopy			
9	Radiopharmaceuticals			
10	The physics of the Gamma Camera			
11	Imaging with SPECT			
12	The physics of PET			
13	Quality assurance in medical imaging			
14	Recent advances in physics which will impact medical physicists			

RECOMMENDED SOURCES				
Textbook	Hendee W.D., "Medical Imaging Physics", Wiley, 2002			
Additional Resources				

MATERIAL SHARING				
Documents				
Assignments	5			
Exams	1 final			

ASSESSMENT				
IN-TERM STUDIES	NUMBER	PERCENTAGE		
Assignment	5	60		
Total		60		
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		40		
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		60		
Total		100		

COURSE CATEGORY	Expertise/Field Courses

	COURSE'S CONTRIBUTION TO PROGRAM					
No. Duo anom	Program Learning Outcomes	(Contribution			
INU	Tiogram Learning Outcomes	1	2	3	4	5
1	Gains the ability to apply the knowledge in physics and mathematics					Χ
2	Gains the ability to construct an experimental setup, perform the experiment, analyze and interpret the results		Х			
3	Has the education required for the measurements in scientific and technological areas			X		
4	Capable of working in an interdisciplinary team					X
5	Capable of identifying, formulating and solving medical physics problems					Χ
6	Conscious of professional and ethical responsibility in their profession					X
7	Can communicate actively and effectively					Χ
8	Has the capabilityto use the knowledge gained to interact and lead medical physics in industrial and hospital situations. Understandsthe social contributions of physics			X		
9	Conscious about the necessity of lifelong education and can implement it			X		
10	Awareness of the current investigations and developments in the field of physics and its application to medical imaging				Х	
11	Can easily utilise the techniques and instrumentation required for physical applications				X	

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION					
Activities	Quantity	Duration (Hour)	Total Workload (Hour)		
Course Duration (Including the exam week: 14x Total course hours)	14	3	42		
Hours for off-the-classroom study (Pre-study, practice)	14	12	168		
Assignment	5	5	25		
Final examination	1	3	3		
Total Work Load			238		
Total Work Load / 25 (h)			9,52		
ECTS Credit of the Course			10		